人工智能(AI)使机器能够从人类经验中学习,适应新的输入,并执行人类的人类任务。 AI正在迅速发展,从过程自动化到认知增强任务和智能流程/数据分析的方式转换业务方式。然而,人类用户的主要挑战是理解和适当地信任AI算法和方法的结果。在本文中,为了解决这一挑战,我们研究并分析了最近在解释的人工智能(XAI)方法和工具中所做的最新工作。我们介绍了一种新颖的XAI进程,便于生产可解释的模型,同时保持高水平的学习性能。我们提出了一种基于互动的证据方法,以帮助人类用户理解和信任启用AI的算法创建的结果和输出。我们在银行域中采用典型方案进行分析客户交易。我们开发数字仪表板以促进与算法的互动结果,并讨论如何提出的XAI方法如何显着提高数据科学家对理解启用AI的算法结果的置信度。
translated by 谷歌翻译
In recent years, there is a growing number of pre-trained models trained on a large corpus of data and yielding good performance on various tasks such as classifying multimodal datasets. These models have shown good performance on natural images but are not fully explored for scarce abstract concepts in images. In this work, we introduce an image/text-based dataset called Greeting Cards. Dataset (GCD) that has abstract visual concepts. In our work, we propose to aggregate features from pretrained images and text embeddings to learn abstract visual concepts from GCD. This allows us to learn the text-modified image features, which combine complementary and redundant information from the multi-modal data streams into a single, meaningful feature. Secondly, the captions for the GCD dataset are computed with the pretrained CLIP-based image captioning model. Finally, we also demonstrate that the proposed the dataset is also useful for generating greeting card images using pre-trained text-to-image generation model.
translated by 谷歌翻译
For a number of tasks, such as 3D reconstruction, robotic interface, autonomous driving, etc., camera calibration is essential. In this study, we present a unique method for predicting intrinsic (principal point offset and focal length) and extrinsic (baseline, pitch, and translation) properties from a pair of images. We suggested a novel method where camera model equations are represented as a neural network in a multi-task learning framework, in contrast to existing methods, which build a comprehensive solution. By reconstructing the 3D points using a camera model neural network and then using the loss in reconstruction to obtain the camera specifications, this innovative camera projection loss (CPL) method allows us that the desired parameters should be estimated. As far as we are aware, our approach is the first one that uses an approach to multi-task learning that includes mathematical formulas in a framework for learning to estimate camera parameters to predict both the extrinsic and intrinsic parameters jointly. Additionally, we provided a new dataset named as CVGL Camera Calibration Dataset [1] which has been collected using the CARLA Simulator [2]. Actually, we show that our suggested strategy out performs both conventional methods and methods based on deep learning on 8 out of 10 parameters that were assessed using both real and synthetic data. Our code and generated dataset are available at https://github.com/thanif/Camera-Calibration-through-Camera-Projection-Loss.
translated by 谷歌翻译
心脏病发病率和心脏死亡率大大增加,这会影响全球公共卫生和世界经济。心脏病的早期预测对于降低心脏发病率和死亡率至关重要。本文提出了两种量子机学习方法,即混合量子神经网络和混合随机森林量子神经网络,用于早期检测心脏病。这些方法应用于克利夫兰和Statlog数据集上。结果表明,混合量子神经网络和混合随机森林量子神经网络分别适用于高维和低维问题。混合量子神经网络对离群数据敏感,而混合随机森林对异常数据的稳健数据具有稳健性。不同机器学习方法之间的比较表明,提出的量子方法更适合于早期的心脏病预测,其中分别为Cleveland和Statlog数据集获得了曲线下96.43%和97.78%的面积。
translated by 谷歌翻译
在当今智能网络物理系统时代,由于它们在复杂的现实世界应用中的最新性能,深度神经网络(DNN)已无处不在。这些网络的高计算复杂性转化为增加的能源消耗,这是在资源受限系统中部署大型DNN的首要障碍。通过培训后量化实现的定点(FP)实现通常用于减少这些网络的能源消耗。但是,FP中的均匀量化间隔将数据结构的位宽度限制为大值,因为需要以足够的分辨率来表示大多数数字并避免较高的量化误差。在本文中,我们利用了关键见解,即(在大多数情况下)DNN的权重和激活主要集中在零接近零,只有少数几个具有较大的幅度。我们提出了Conlocnn,该框架是通过利用来实现节能低精度深度卷积神经网络推断的框架:(1)重量的不均匀量化,以简化复杂的乘法操作的简化; (2)激活值之间的相关性,可以在低成本的情况下以低成本进行部分补偿,而无需任何运行时开销。为了显着从不均匀的量化中受益,我们还提出了一种新颖的数据表示格式,编码低精度二进制签名数字,以压缩重量的位宽度,同时确保直接使用编码的权重来使用新颖的多重和处理 - 积累(MAC)单元设计。
translated by 谷歌翻译
Camera calibration is a necessity in various tasks including 3D reconstruction, hand-eye coordination for a robotic interaction, autonomous driving, etc. In this work we propose a novel method to predict extrinsic (baseline, pitch, and translation), intrinsic (focal length and principal point offset) parameters using an image pair. Unlike existing methods, instead of designing an end-to-end solution, we proposed a new representation that incorporates camera model equations as a neural network in multi-task learning framework. We estimate the desired parameters via novel camera projection loss (CPL) that uses the camera model neural network to reconstruct the 3D points and uses the reconstruction loss to estimate the camera parameters. To the best of our knowledge, ours is the first method to jointly estimate both the intrinsic and extrinsic parameters via a multi-task learning methodology that combines analytical equations in learning framework for the estimation of camera parameters. We also proposed a novel dataset using CARLA Simulator. Empirically, we demonstrate that our proposed approach achieves better performance with respect to both deep learning-based and traditional methods on 8 out of 10 parameters evaluated using both synthetic and real data. Our code and generated dataset are available at https://github.com/thanif/Camera-Calibration-through-Camera-Projection-Loss.
translated by 谷歌翻译
测量使用熵的时间序列的可预测性和复杂性是必不可少的工具去签名和控制非线性系统。然而,现有方法具有与熵对方法参数的强大依赖性相关的一些缺点。为了克服这些困难,本研究提出了一种使用LOGNNET神经网络模型估算时间序列熵的新方法。根据我们的算法,LognNet储库矩阵用时间序列元素填充。来自MNIST-10数据库的图像分类的准确性被认为是熵测量并由NNetEN表示。熵计算的新颖性是时间序列参与混合RES-ERVOIR中的输入信息。时间序列中的更大复杂性导致更高的分类精度和更高的Nneten值。我们介绍了一个新的时序序列特征,称为时间序列学习惯性,确定神经网络的学习率。该方法的鲁棒性和效率在混沌,周期性,随机,二进制和恒定时间序列上验证。 NNetEN与其他熵估计方法的比较表明,我们的方法更加稳健,准确,可广泛用于实践中。
translated by 谷歌翻译
在神经网络和物联网(IOT)时,寻找能够在有限的计算能力和小内存大小上运行的新神经网络架构成为紧急议程。为IOT应用程序设计合适的算法是一个重要任务。本文提出了一种馈送前向LognNet神经网络,它使用半线性Henon型离散混沌映射映射来分类MNIST-10数据集。该模型由储层部件和可培训分类器组成。储层部件的目的是使用特殊矩阵归档方法和混沌映射产生的时间序列来改变输入以最大化分类精度。使用随机移民的粒子群优化优化混沌图的参数。因此,与LognNet的原始版本相比,所提出的LognNet / HENON分类器具有更高的准确性和相同的RAM使用情况,并为IOT设备提供了有希望的实现机会。此外,证明了分类熵值与分类的准确性之间的直接关系。
translated by 谷歌翻译